A focused information criterion for graphical models
نویسندگان
چکیده
A new method for model selection for Gaussian Bayesian networks and Markov networks, with extensions towards ancestral graphs, is constructed to have good mean squared error properties. The method is based on the focused information criterion, and offers the possibility of fitting individualtailored models. The focus of the research, that is, the purpose of the model, directs the selection. It is shown that using the focused information criterion leads to a graph with small mean squared error. The low mean squared error ensures accurate estimation using a graphical model; here estimation rather than explanation is the main objective. Two situations that commonly occur in practice are treated: a datadriven full discovery of the graphical structure and the improvement of an already pre-specified feasible model. The search algorithms are illustrated by means of data examples and are compared with existing methods in a simulation study.
منابع مشابه
Structure learning using a focused information criterion in graphical models
A new method for model selection for Gaussian directed acyclic graphs (DAG) and Gaussian graphical models (GGM), with extensions towards ancestral graphs (AG), is constructed to have good prediction properties. The method is based on the focused information criterion, and offers the possibility of fitting individual tailored models. The focus of the research, that is, the purpose of the model, ...
متن کاملConstructing Graphical Models via the Focused Information Criterion
A focused information criterion is developed to estimate undirected graphical models where for each node in the graph a generalized linear model is put forward conditioned upon the other nodes in the graph. The proposed method selects a graph with a small estimated mean squared error for a user-specified focus, which is a function of the parameters in the generalized linear models, by selecting...
متن کاملExtended Bayesian Information Criteria for Gaussian Graphical Models
Gaussian graphical models with sparsity in the inverse covariance matrix are of significant interest in many modern applications. For the problem of recovering the graphical structure, information criteria provide useful optimization objectives for algorithms searching through sets of graphs or for selection of tuning parameters of other methods such as the graphical lasso, which is a likelihoo...
متن کاملHigh-dimensional Graphical Model Search with gRapHD R Package
This paper presents the R package gRapHD for efficient selection of highdimensional undirected graphical models. The package provides tools for selecting trees, forests and decomposable models minimizing information criteria such as AIC or BIC, and for displaying the independence graphs of the models. It has also some useful tools for analysing graphical structures. It supports the use of discr...
متن کاملMaximum Entropy Expectation-Maximization Algorithm for Fitting Latent-Variable Graphical Models to Multivariate Time Series
This work is focused on latent-variable graphical models for multivariate time series. We show how an algorithm which was originally used for finding zeros in the inverse of the covariance matrix can be generalized such that to identify the sparsity pattern of the inverse of spectral density matrix. When applied to a given time series, the algorithm produces a set of candidate models. Various i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics and Computing
دوره 25 شماره
صفحات -
تاریخ انتشار 2015